



MAPS

Man-made structures and Apex Predators: Spatial interactions and overlap

James Grecian, Elizabeth Masden, Debbie JF Russell

Objective

- Establish the magnitude of the effects of manmade structures compared to the spatial and temporal variability of the North Sea ecosystem, considered on different time and space scale
 - With regard marine apex predators

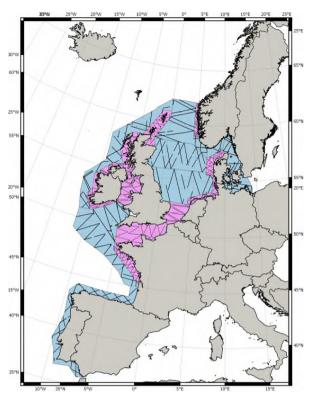
Why marine predators

- Indicator species
- Monitoring
 - Large scale
 - Fine scale
- Potential Effects
 - Vary with structure life-stage
 - Negative
 - Disturbance
 - Hearing damage
 - Habitat changes
 - Collision risk
 - Positive
 - Rest stops
 - De facto MPAs
 - Artificial Reefs

Cetaceans

Known

- Harbour porpoise
 - Displaced during windfarm construction
 - Dähne et al. 2013
 - Foraging at structures
 - Todd et al. 2009; Scheidat et al. 2011


Unknown

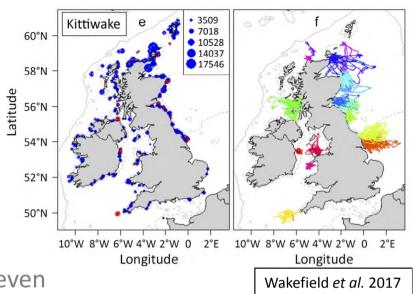
— To what extent do structures drive or even overlap with distribution ?

Data available

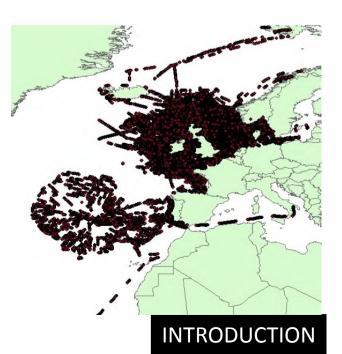
- Small Cetacean Abundance in the North Sea and adjacent waters survey
 - Hammond et al. 2013

Seabirds

Known


- Windfarms
 - E.g. Cleasby *et al*. 2015

Unknown

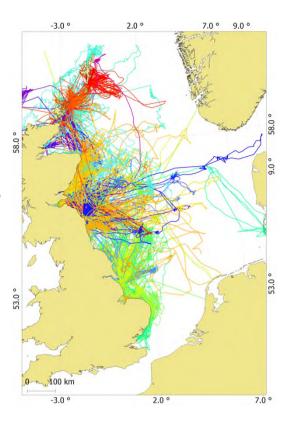

- To what extent do structures drive or even overlap with distribution?
- Do seabirds use structures for foraging?

Data available

- European Seabirds At Sea (ESAS) survey data (1979-2011)
- RSPB/CEH telemetry data (FAME & STAR projects)
 - black-legged kittiwakes (n= 267), razorbill (n=125), northern fulmar (n=32) and common guillemot (n=64), European shag (n=73)

Seals

Known


- Displacement and potential hearing damage
 - Hastie *et al.* 2015, 2017; Russell *et al.* 2016
- Individuals foraging at structure
 - Russell et al. 2014

Unknown

- To what extent do structures drive or even overlap with distribution?
- How prevalent is the use of structures for foraging?

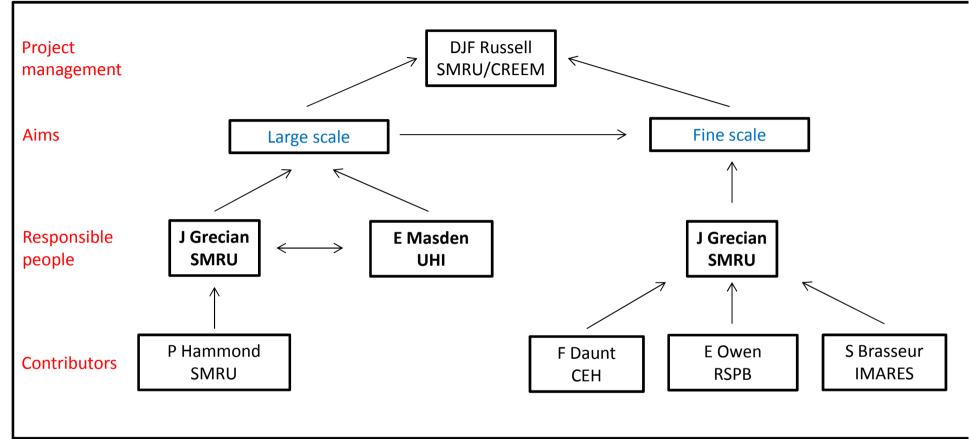
• Data available

- GPS Telemetry data
 - 30 grey seals
 - 55 harbour seals

Aims

1. Large scale

- Assess the influence of, and overlap between, man-made structures and the distribution of apex predators in the North Sea
 - Cetaceans
 - Seabirds
 - Seals


2. Fine scale

- Assess the prevalence of the use of man-made structures for foraging in the North Sea.
 - Seabirds
 - Seals

Project organisation

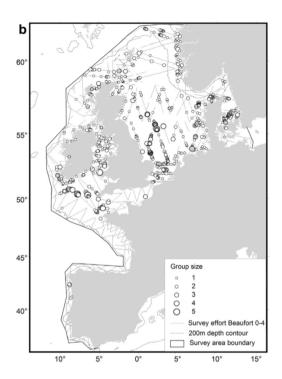
1. Large scale

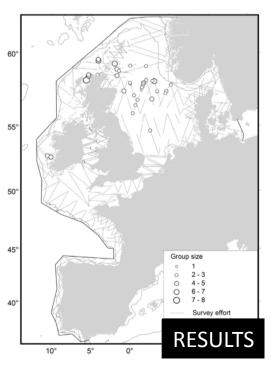
- The magnitude of the effects of man-made structures on distribution compared to the spatial and temporal variability of the North Sea ecosystem
- Include environmental drivers shown to influence distribution
 - Static covariates
 - Distance from coast (haul-out in seals)
 - Depth
 - Sediment type
 - Proxy for prey availability
 - Dynamic covariates
 - Winter sea surface temperature (lagged by one year)
 - Proxy for prey availability
- Presence of a structure within 1 km

1. Large scale

Statistical Modelling

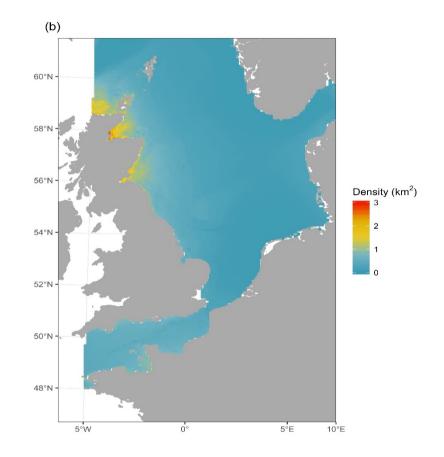
- Population level inference
- Habitat preference analyses
- Allow flexible non-linear effects of covariates
 - Generalised additive models
- Seabirds and Cetaceans (survey data)
 - Account for detectability of animals
 - Account for differences between transects
- Seals (telemetry data)
 - Control for habitat availability
 - Control for accessibility
 - Control for multiple individuals
- References
 - Aarts et al. 2008
 - Hammond et al. 2013
 - Russell et al. 2016


1. Large scale - cetaceans


- Harbour porpoise
 - Depth
 - Distance to coast
 - Lagged winter sea surface temperature
 - Structure presence

1. Large scale - cetaceans

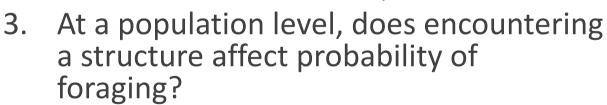
- White-beaked dolphin
 - lagged winter sea surface temperature
- Minke Whale
 - No covariates retained
- Issues with model fitting

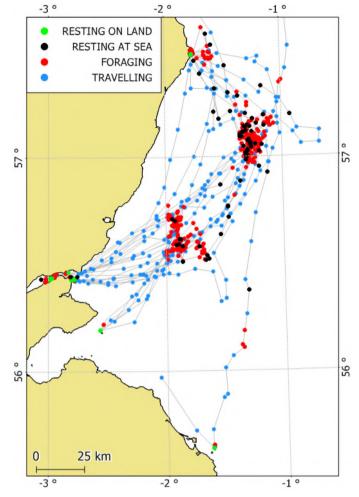


1.Large scale - seabirds

- Black-legged kittiwake
 - No covariates
- Common guillemot
 - depth
- European Shag
 - No covariates
- Northern fulmar
 - Distance to coast
 - Sediment type
 - Structure presence
- Razorbill
 - Did not converge

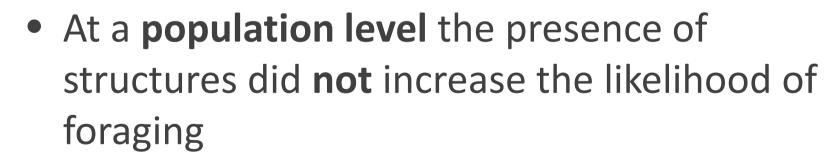
1. Large scale - seals


- Grey seals
 - Depth
 - Distance to haul-out site
 - Lagged winter sea surface temperature
 - Sediment type
 - Structure presence
- Harbour seals
 - Depth
 - Distance to haul-out site
 - Lagged winter sea surface temperature
 - Sediment type
- Spatial predictions



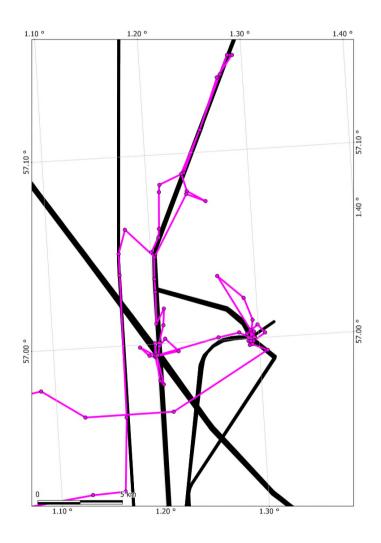
2. Fine scale

- 1. Identify encounters
 - Within 500m of structure
- 2. Identify behavioural states
 - Hidden Markov Models
 - Russell et al. 2015, 2016
 - States
 - Foraging
 - Slow tortuous movements
 - Travelling
 - Faster, more directed movements
 - Resting
 - Slow movements/activity data

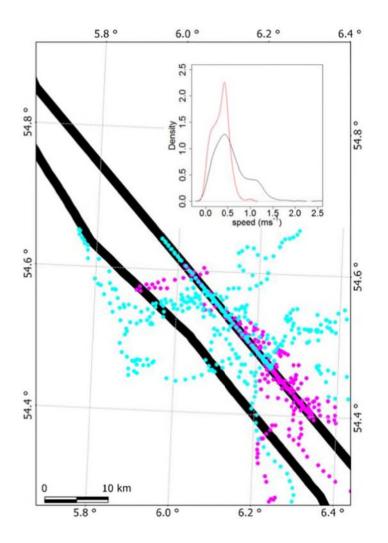


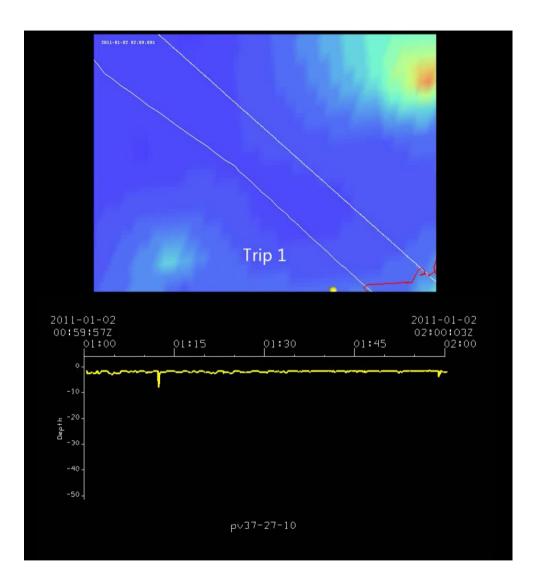
2. Fine scale - seabirds

- Assigned behavioural states
 - Black-legged kittiwake
 - Common guillemot
 - Northern Fulmar
 - Razorbill



2. Fine scale - seals


Ongoing



2. Fine scale - seals

Cetaceans

- Known
 - Harbour porpoise
 - Displaced during windfarm construction
 - Dähne et al. 2013
 - Foraging at structures
 - Todd et al. 2009; Scheidat et al. 2011
 - Evidence that structures have some influence on the North Sea harbour porpoise distribution
 - White beaked dolphin and minke whale
 - No evidence that, at a population level, distribution is influenced by structures
 - Data suitability issues
- Next steps
 - Robustness of harbour porpoise result
 - SCANS I
 - SCANS III
 - Minke whale and white-beaked dolphin
 - Restrict spatial extent of analyses

Seabirds

- Known
 - Windfarms
 - E.g. Cleasby et al. 2015
 - Large scale
 - No evidence that, at a population level, distribution is influenced by structures
 - Data suitability issues
 - Fine scale
 - Structures appear to influence the behaviour of some individuals
 - At a population level, no impact of structures on foraging behaviour
- Next steps
 - Large scale
 - Using data from loggers to investigate the influence of structures on the summer foraging distributions.
 - Wakefield et al. 2017
 - Fine scale
 - Determine the mechanism underlying any association between individuals and structures
 - Vessel Monitoring data
 - Structure type (visibility)

Seals

Known

- Displacement and potential hearing damage
 - Hastie et al. 2015, 2017; Russell et al. 2016
- Individuals foraging at structure
 - Russell et al. 2014
- Large scale
 - At a population level, distribution is not impacted by structures
 - May change with increasing near shore abundance of structures
 - Overlap with structures quantified
- Fine scale
 - Evidence that some individuals forage at platforms
 - Effects of structure age

Next steps

- Structure type and age effects
 - Additional telemetry data in areas with structures of various ages
 - Department of Business, Energy and Industrial Strategy
 - Information regarding whether pipelines are buried

Thank you

- INSITE
 - Industry sponsors
 - ISAB
 - Richard Heard
- Colleagues at SMRU, CREEM, UHI, RSPB and CEH
- SMRU Instrumentation
- Professor Paul Thompson, University of Aberdeen
- Joint Nature Conservation Committee (JNCC) for provision of ESAS data
- Data funders
 - Argyll Bird Club, Department for Business, Energy & Industrial Strategy, Environment Wales, European Union, Fair Isle Bird Observatory Trust, JNCC, Marine Scotland, Natural England, Natural Environment Research Council, Natural Resources Wales, SMRU, Scottish Natural Heritage, RSPB, Vodafone UK.

@ SMRU