Reef effects of structures in the North Sea: Islands or connections? (RECON)

Joop Coolen, presented by: Han Lindeboom

31 October, 2017. INSITE Science Day, London

joop.coolen@wur.nl; tel +31 317 48 69 84

North Sea history: lost oyster reefs

Olsen 1883

1883: ~27.000 km² oyster reefs= 32% of Dutch sea bottom covered

North Sea history: lost oyster reefs

Today: oyster reefs extinct offshore < 800 km² rock/gravel beds in NL **(**) = 1.5% of Dutch sea bottom covered The rest (98.5%) = sand bottom ()

Mainly sand bottom

Mainly sand bottom

Add objects:

Wrecks (~25.000)

Mainly sand bottom

Add objects:

Wrecks (~25.000)

O&G installations (~ 1,300)

Mainly sand bottom

Add objects:

Wrecks (~25.000)

O&G installations (~ 1,300)

Wind turbines (> 2,500)

Mainly sand bottom Add objects: Wrecks (~25.000) O&G installations (~ 1,300) Wind turbines (> 2,500)Buoys (many thousands)

Et cetera

Artificial structures facilitate reef species

RECON Research questions

- What is the effect of artificial objects on the distribution of reef species in the North Sea?
- Which benthic species live on offshore structures?
 Can we identify the drivers for their presence?
 Can we predict which species grow at locations?
 Are these locations interconnected or isolated?

1. Analyse ROV data from platforms

2. Modelling species patterns on offshore installations using samples
3. Identifying new and rarely observed species for the Dutch North Sea
4. Develop hard substrate benthic metabarcoding techniques
5. Assess interconnectivity using *Mytilus edulis* genetics
6. Assess interconnectivity using *Jassa herdmani* genetics

RECON project team

WMR Joop Coolen Han Lindeboom

Species inventory ROV

- 17 platforms
- NL Petrogas
- DK Maersk Oil
- ROV inspection video legs & risers

Results species inventory ROV

Blue mussel *Mytilus edulis*

Common starfish Asterias rubens

Dead men's finger Alcyonium digitatum

Plumose anemone Metridium dianthus

Fig sponge Suberitus ficus

Reef species on oil & gas platforms ENGIE

Investigated 2012 - 2016: Patterns in biodiversity on structure Similarity to natural reefs (EU protected habitats)

Patterns biodiversity

Total: 138 species on platforms Shallow: Blue mussels Intermediate: Hydroids & Gammarids Deep: Anemones & soft corals

Shallow parts most 'unnatural' High diversity at intermediate depths Deep parts most like natural reefs

Photo credits: Inductiveload, Bernard Picton, Hans Hillewaert, André-Philippe D. Picard, Bengt Littorin

Number of species

Species inventory

New and rarely observed species for the Dutch North Sea

Skeleton shrimps

Pseudoprotella phasma

Caprella tuberculata

Caprella equilibra

Polychaete worms

No picture available

Harmothoe aspera

Syllis amica

Syllis vitata

Metabarcoding of mixed macrofauna samples

Using samples from shipwrecks & coastal reefs

- Add species to barcode databases
- Develop metabarcoding protocols
- Output:

- >150 species identified
- ~300 individuals to be barcoded & published
- Work in progress

Do mussels use offshore structures to disperse?

Mytilus edulis

Methods

Modelling

Delft 3D particle tracking model
 `Release' 10⁶ particles per location (

Methods

Modelling

- Delft 3D particle tracking model
 'Release' 10⁶ particles per location
 <u>Sampling</u>
- Sampled >48 mussels per location
- Molecular analysis: Microsatellites
- Calculate pairwise distance F_{ST}
- Model migrations with Ima2p

Results: patterns in particle 'distance'

Discussion *M. edulis* connectivity

Particle tracking 90% zero

 Locations too far apart?

 Rare events drive colonisation far offshore?

 UNDINE project

Next steps

• Add in-between locations

• Investigate long term variation in models (Lacroix et al.)

Genetic patterns Jassa herdmani

Present in high numbers → up to 1.000.000 per m² 17 successful sample locations High differentiation = low connectivity Significant difference among locations

Conclusions research

- Installations highly biodiverse
- Over 200 hard substrate associated species
- Composition most influenced by location, depth & substrate type
- Deep parts most like natural reefs
- Removal of installations will reduce local biodiversity
- Installations likely connected via water currents
 - \rightarrow Depending on species' life cycles

Recommendations

- Increase spatial distribution of locations to be investigated
- Include concrete structures
- Continue connectivity work by adding in-between locations
- Complete barcoding databases
- Develop methods to sample deeper locations (>50m) using ROV & metabarcoding with high numbers of samples.

Partners & sponsors RECON

Thank you

With thanks to:

Udo van Dongen; Oscar Bos; Ulf Sjöqvist; Youri van Es For the use of their photo's

And many others that took samples for us

This work was supported by: The INSITE Programme [Foundation Phase, 2016-2017] The Wageningen UR TripleP@Sea Innovation program The Dutch Department of Economic Affairs

Video Sampling

ENGIE platform: <u>https://youtu.be/edz8CzjybMc</u>

